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Efficiency

When we looked at binary search, we talked about how efficient it was. So let us just
spend a little bit of time informally understanding how we look at efficiency of

algorithms.

(Refer Slide Time: 00:02)

Efficiency

* Measure time taken by an algorithm as a function
T(n) with respect to input size n

» Usually report worst case behaviour

* Worst case for searching in a sequence is when
value is not found

« Worst case is easier to calculate than “average”
case or other more reasonable measures

In general an algorithm will work on many different sizes of inputs, so it makes sense to
talk about the efficiency as a function of the input size. The input size is n we will use a
function such as T of n to talk about that time taken on an input of size n. Of course, even
of the same size, different inputs will take different time for an algorithm to execute, so
which of these should we taken as our measure of efficiency. The convention is to use the
worst case behavior. Among all the inputs of size n which one will force our algorithm to

take the longest time, and this is what we call usually the worst case efficiency.

Now in the case of searching for instance, binary search or even a linear scan, we said

that the worst case would occur typically when the value that we are trying to find is not
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found in this sequence. So, we actually have to scan through the entire sequence or array
or list before we find it in case of a linear scan. And in terms of a binary search we have
to reduce the search interval to a trivial interval before we can declare that the value is

not there. So that is the worst case.

Now, it may turn out that in many algorithms the worst case is rare. It may not be a
representative idea about how bad or good the algorithm is and may be it could be better
to give something like the average case behavior. Now unfortunately in order to
determine something like an average case in a mathematically precise way is not easy,
we have to have a probability distribution over all inputs and then measure different
inputs and different outputs and then compute a probabilistic mean for this. So in most

cases this is not possible which is why we settle for the worst case efficiency.

(Refer Slide Time: 01:59)

O( ) notation

» Interested in broad relationship between input size
and running time

* Is T(n) proportional to log n, n, nlog n, n?, ..., 2"?

« Write T(n) = O(n), T(n) = O(n log n), ... to indicate
this

» Linear scan is O(n) for arrays and lists

» Binary search is O(log n) for sorted arrays

When we talk about efficiency, as we said we are broadly interested in the connection
between input size and output size so we express this up to proportionality. So we are not
really interested in exact constants we want to know for instance is T of n proportional to
log of n, for example in the case of binary search or n in the case of linear scan or larger
values like n log n, n squared, n cubed, or is it even exponentially dependent on the
input, is it 2 to the n. We write this using this, what is called the big O notation. So when
you say T of n is big O of n what we mean is that T of n is some constant times n. Same

way T of n is big O n log n means T of n is some gonstant times n log n. In other words,
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is proportional by some constant to that value.

So, we are not going to go into much detail in this course about how big'0 is defined and
calculate it, but ifis'a useful short hand @ describe the efficiency of algorithms. So we
will use it informally and you can go and read an algorithms text book to find out how it
is more formally defined. In terms of this notation when we say that linear scan is
proportional to the length of an array or a list we can say that linear scan takes time big O

of n. In the same way for a sorted array binary search will take time big O log of n.

(Refer Slide Time: 03:24)

Typical functions T(n)...
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So, here is a table which tabulates for different values of input n what would be the
corresponding values of log n, n, n log n, n Squared and so on. And what we want to
probably estimate is given these values, these absolute numbers, what could be

reasonable inputs that we can expect to compute within a few seconds.

Now if we type something on our computer and we do not get a response very soon these

days we realize that something may be wrong. So, let us say we want to see the input i
one or two seconds otherwise we will deemlit to be inefficient. So, if we look at fhis, we

have to now figure out how fast our computers are. So, by some simple hand
experiments you can validate that Python can do about 10 to the 7 basic steps in a

second.
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So what we can do is try and gxecute a large loop and see how much time it takes. Here
we have a bunch of programs if you already written and here is a template. So if I say
look at speed4 dot py. It basically executes a loop 10 to the 4 times, hence the name 4.
So, for m in range 0 to 10000 minus 1, it just assigns m to be the value i and finally there
is this statement we have not seen so far, but it should be quite intuitive which says print

the value of n.

In the same way speed5 does this for 10 to the 5 times, speed6 does this 10 to the 6
times, speed7 does this 10 to the 7 times and so on. These are a bunch of scripts we have
written for Python from speed4 to speed9. Now if you are working in Unix or in Linux

there 1s a nice command called time.

First of all I can take python and I can take directly use a name of the Python program
like this. So, I can say Python 3.5 and give the name of this script and it will execute it
and give you the answer. But now in addition there is also a useful command called time.
So, time tells us how much time this thing takes to execute and it typically reports this in
three quantities; real time, user time, and system time. So, what we really need to look at
is the so called user time it says that if I do this loop 10 to the 4 times it takes us fraction
of a second 0.03 seconds. If i do this on the other hand 5 times, then it goes from 0.03 to

0.5. So, it is roughly a factor of 10 as you would imagine which is reasonable.

If I do this point 6 times then again it goes up not quite by a factor of 10, but it is gone up
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to about 0.2 seconds. Now we come to the limit that we claim 10 to the 7. So, if we run
speed? dot py, which is the loop 10 to the 7 it takes about 1 second. I mean this is not a
precise calculation, but if you run it repeatedly you say at each time, because there are
some other factors like how long it takes for the system to load the Python interpreter
and all that, but if you just do it repeatedly you see that the 10 to the 7 takes about the
second or more. This is the basis of My saying that Python can do about 10 to the 7

operations in a second.

And just to illustrate, if you - do it for 10 to the 8 you can see it takes a very long
time, and in fact it takes roughly 10 to 12 seconds to execute so soon we would hopefully
see the output. As you can see 10 seconds does not seem to us like a very long time, but
it is @ enormously long time when you are sitting in front of a screen waiting for the
response. So what we claim now is that, something that takes a couple of seconds is what

we will deem as an effective input that we can solve on our computer.

(Refer Slide Time: 07:10)
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So, coming back to our table assuming that 10 to the 7 is the limit that we are looking at,
let us see what happens when we mark of 10 to the 7 om these different columns. It turns
out as something takes log n of time then even for 10 to the 10 it takes only 33 steps and
we are fine. Of course, if input is linear then we are ignoring the constant then the input
of size 10 to the 7 will take 10, so this line comes here. On the other hand if we have n

log n.
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Now it turns out that n log n, so it is useful to know that 2 to the 10 as we mentioned
before is 1024. Therefore, 2 to the 20 will be 10 to the power 6, and 2 to the 30 will be
10 to the power 9. Here the log grows linearly as this thing grows in terms of powers of
10. So, when we have 10 to the 7 then the log is going to be something like 20
something, so it is going to be of the order of 10, its going to drop one 0. So, that is why
we say that for input of size 10 to the 6, here the log is going to contribute a factor of 10

so that is going to take time 10 to the 7.

Now notice that when you do square then 10 to the 3 is already going to take 10 to the 6.
So, somewhere between 1000 and 10000 say around 5000 may be if you are lucky will
be the feasible limit for something which takes n squared fime. And as we go to n cubed
the limit drops from a few thousand to a few hundred. So, here we have between 10 to
the 6 and 10 to the 9. So, somewhere between 100 and 1000 the scaling goes from 10 to
the 6 to 10 to the 9, so where 10 to the 7 will be somewhere around 200 or 300. When
you get to the exponentials like 2 to the n and n factorial, then unless you have an input
that is really small like 10 or something like that we are going to hit problems, because

we have a few tens you already get to enormous numbers like 10 to the 30.

This gives us an idea that given that our system that we are working which Python can
do about 10 to the 7 steps in a second, we need to really examine this table to understand
what kind of inputs will be realistic to process given the time type of algorithm that we
are executing. Now Python is 10 to the 7. Python is a bit slower than other languages, but
even if you are using a very fast language like C or C++ you cannot realistically expect
to go beyond 10 to the 8 or 10 to the 9. So this table is more or less valid up to a scaling
of a few tens in different languages. So, you can take this as a reasonable estimate across

languages.
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Efficiency

» Theoretically T(n) = O(n¥) is considered efficient
* Polynomial time

* |n practice even T(n) = O(n®) has very limited
effective range

» Inputs larger than size 5000 take very long

Theoretically if you look at algorithms books or complexity theoretic books, any
polynomial, any dependence on n which is of the form n to the k for a constant k is
considered efficient. These are the so called Polynomial time algorithms. So n cubed, n
to the 5, n to the 7, all of these are considered to be theoretically efficient algorithms as
compared to 2 to the n and so on. So you have n to the 7 versus 2 to the n. So, n to the 7

is considered efficient, 2 to the n is not.

But what the table tells us if you look at the previous table, is that even n square has a
very severe limit, we can only do about 4 to 5000. If you are doing something in n
squared time we cannot process something larger than a few thousands. Now many of
the things that we see in real life, like if we have a large spreadsheet or we have anything

like that and we want to sort it then it is very likely to have a few thousand entries.

Supposing, even if you want to just look at all the employees in a medium sized
company or all those children in a class and in a school or something like that, a few
thousands is not at all a large number. Therefore, what we see is that if we go beyond that
an n squared algorithm would take enormously long time to compute. So really we have
to think very hard about what are the limits of what we can hope to do and that is why it
is very important to use the best possible algorithm. Because by using something which
is better you can dramatically improve the range of inputs on which your algorithm

works.
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